Karolong ena e reretsoe ho sebelisoa e le ya referense eo e neng e e-na le ho bala e le phetoang.
Tse ngata tsa meralo ea khaolong ena li boetse li tiisoa ke bua morao tjena mopresidente nakong Mokhatlo American ea Public Maikutlo Research (AAPOR), tse kang Dillman (2002) , Newport (2011) , Santos (2014) , le Link (2015) .
Etsoe libaka tse tummeng historing eketsehileng semelo ka tsoelo-pele ea patlisiso ea phuputso e entsoeng, sheba Smith (1976) le ho Converse (1987) . Bakeng sa ka khopolo ea ho eras tse tharo tsa ho etsa lipatlisiso phuputso e entsoeng, sheba Groves (2011) le ho Dillman, Smyth, and Christian (2008) (e leng roba ile sa nyoloha le eras tharo hanyenyane ka tsela e fapaneng).
A tlhoro hare phetoho ea ho tloha ba pele ba ho mehla ea bobeli etsa lipatlisiso phuputso e entsoeng ke Groves and Kahn (1979) , e leng se etsang e qaqileng hlooho-to-hlooho papiso pakeng tsa sefahleho-le-sefatlhego le phuputso e entsoeng ka thelefono. Brick and Tucker (2007) sheba khutlela ka kakaretso ntshetsopele ea histori ea tšohanyetso dijiti daela mohlala. mekhoa
Bakeng sa hore na phuputso e entsoeng ho etsa lipatlisiso e fetohile nakong e fetileng ka lebaka la liphetoho tse itseng sechabeng, bona Tourangeau (2004) , Mitofsky (1989) , le Couper (2011) .
Ho ithuta ka e re hare ka ho botsa lipotso tse ka mathata hobane ka linako tse ling ba arabetseng ka bobona ba sa e lemoheng e re bona ka hare. Ka mohlala, Nisbett and Wilson (1977) ba na hatisitsoeng pampiring e babatsehang le sehlooho evocative: "Ho bolella ho feta kamoo re ka tsebang:. Litlaleho tse molomo mabapi le dithulaganyo ba kelello" Ka pampiri baqapi ba etsa qeto ea: "bafo linako tse ling (a) hlokomele boteng ba hlasimollang e botlhokwa susumetsoa karabelo, (b) hlokomele boteng ba re'ng, 'me (c) a sa hlokomele hore ntho e susumetsang amme karabo eo. "
Etsoe likhang hoo babatlisisi lokela khetha boitshwaro ja hlokomela hore e ile ea tlaleha boitshwaro ja kapa maikutlo, sheba Baumeister, Vohs, and Funder (2007) (kelello) le Jerolmack and Khan (2014) le ho mamela likarabo (Maynard 2014; Cerulo 2014; Vaisey 2014; Jerolmack and Khan 2014) (kahisano). Phapang pakeng tsa ho botsa le ho sheba boetse hlaha moruo, moo bafuputsi ba bua ka litaba-tabelo o ile a re le senoloa. Ka mohlala, mofuputsi e mong o ne a ka botsa hore na ba arabetseng khetha ho ja ka holim'a ice cream kapa tlil'o ikoetlisetsa (o ile a re lokela dikgetho tsa) kapa lipatlisiso tse ka boloka hangata hakae batho ja ka holim'a ice cream le ho ea ikoetlisetsa ho (a senola litaba-tabelo). Ho na le e tebileng lipelaelo tsa mefuta e itseng ea data ho boletsoe dikgethollo moruong (Hausman 2012) .
A sehlooho se reng ka sehloohong ho tloha ho pheha khang tsena ke hore boitsoaro bo tlaleha mosebetsi oa bona hase kamehla e nepahetseng. Empa, ka tsela e iketsang e tlalehiloeng boitshwaro ja ka 'na ua e nepahetseng, a ke ke a bokella pele ho e le sampole ea phaello, mme a ke ke ho fihlellwa moholo ho bafuputsi. Kahoo, ka Maemong a mang, ke nahana hore boitsoaro bo tlaleha mosebetsi oa bona e ka ba molemo. Ho ekelletsa moo, ntho ea bobeli sehlooho se seholo sa ho tloha ho pheha khang tsena ke hore litlaleho tse mabapi maikutlo, tsebo, litebello, 'me maikutlo a Hase hangata e nepahetseng. Empa, haeba boitsebiso bo eketsehileng mabapi e re tsena hare ho hlokahala ke bafuputsi-ebang ho thusa ho hlalosa tse ling boitshwaro ja kapa e le ntho e ho hlalosoa-eo ka nako botsa ka 'na ba ho loketseng.
Buka bolelele liphekolo mabapi le phoso tjhelete yohle phuputso e entsoeng, sheba Groves et al. (2009) kapa Weisberg (2005) . Etsoe histori ea ntshetsopele ya phoso tjhelete yohle phuputso e entsoeng, sheba Groves and Lyberg (2010) .
Ho latela boemedi, e ngotsoeng selelekeleng e khōlō ho litokollo tsa bao e seng karabelo le bao e seng karabelo leeme ke tlaleho National la Lipatlisiso ka Nonresponse a Social Science Lipatlisiso: A Agenda Research (2013) . Tjhebokakaretso e mong le thuso e fanoeng ke (Groves 2006) . Hape, lohle litokollo tse khethehileng tsa Journal of Official Lipalo-palo, Public Maikutlo kotara e nngwe le, 'me The litlaleho tseo li sa American Academy ea Lipolotiki le Science Social' nile ha hatisoa ka sehlooho se bao e seng karabo. Qetellong, ho na le litsela ha e le hantle e mengata e fapaneng ea bala tekanyo karabelo; le atamela tsena li hlalosa ka ho qaqileng ka tlaleho ea Mokhatlo oa Amerika oa Public Maikutlo Bafuputsi (AAPOR) (Public Opinion Researchers} 2015) .
Ea 1936 dingolwa Digest phuputsong e 'nile ba ithuta ka ho qaqileng (Bryson 1976; Squire 1988; Cahalan 1989; Lusinchi 2012) . E boetse e sebelisoa e le papisong ea ho lemosa haphazard pokello ya data (Gayo-Avello 2011) . Ka 1936, George Gallup sebelisa foromong e tsoetseng pele ho feta tsa mohlala, 'me o ne a khona ho hlahisa likhakanyo tsa nepahetseng haholoanyane le sampole nyenyane haholo. Lebisang katlehong Gallup a holim 'a dingolwa Digest e ne e le bohato ba bohlokoa ntshetsopele ya ho etsa lipatlisiso phuputso e entsoeng (Converse 1987, Ch 3; Ohmer 2006, Ch 4; Igo 2008, Ch 3) .
Ho latela lekanya, ntho ea pele e khōlō mohlodi bakeng sa ho qapa dipotsisonyakisiso ke Bradburn, Sudman, and Wansink (2004) . Bakeng sa kalafo e tsoetseng pele ho feta tsepamisa maikutlo ka ho toba ka lipotso boikutlo, bona Schuman and Presser (1996) . More ka lipotso pele ho etsa diteko e fumaneha ka Presser and Blair (1994) , Presser et al. (2004) , le Khaolong ea 8 ea Groves et al. (2009) .
The khale, buka-bolelele kalafo ya letshwao la kgwebo-theoha pakeng tsa ditjeo phuputso e entsoeng le ho talima liphoso phuputso e entsoeng ke Groves (2004) .
Classic buka-bolelele kalafo ea maemo a kgonego mohlala le phopholetso ke Lohr (2009) (eketsehileng ba kenyelletso) le Särndal, Swensson, and Wretman (2003) (hatetse pejana). A khale buka-bolelele kalafo ea mekhoa poso-stratification le tse amanang le ke Särndal and Lundström (2005) . Ka tsela e itseng di-setting tsa digital dilemo, bafuputsi ba tseba hanyenyane haholo mabapi bao e seng ba arabetseng, e leng e ne e se atisa ho etsahalla nakong e fetileng. Mefuta e sa tšoaneng ea phetoho non-karabelo ke ho khonehang ha bafuputsi ba le boitsebiso bo eketsehileng mabapi bao e seng ba arabetseng (Kalton and Flores-Cervantes 2003; Smith 2011) .
The thuto Xbox ea Wang et al. (2015) e sebelisa mokhoa bitsoa multilevel bofokoli le morago stratification (MRP, ka linako tse ling bitsoa "Mister P") e lumellang bafuputsi ho hakanyetsa seleng bolela esita le ha ho na le ba bangata ba, lisele tse ngata. Le hoja ho ke ba bang ba khang ka boleng ba likhakanyo tse tsoang mokhoa ona, ho bonahala joaloka sebakeng se hlamatsehang ho hlahloba. Lewa e ne e lekhetlo la pele sebelisitsoeng Park, Gelman, and Bafumi (2004) ,' me ho 'nile ha morago ga moo e sebelisa le ho li phehisano e (Gelman 2007; Lax and Phillips 2009; Pacheco 2011; Buttice and Highton 2013; Toshkov 2015) . Etsoe eketsehileng mabapi le kamano e teng pakeng litekanyo batho ka bomong le litekanyo tse seleng e thehiloeng bona Gelman (2007) .
Etsoe le atamela tse ling ho dipatlisiso bokete web, bona Schonlau et al. (2009) , Valliant and Dever (2011) , le Bethlehem (2010) .
Sample le tshwanang ile sisintsweng ke Rivers (2007) . Bethlehem (2015) pheha khang ea hore tshebetso ya sampole le tshwanang tla ba e tšoanang le e atamela mathata a mang mohlala (mohlala, stratified mohlala) le le atamela tse ling phetoho (mohlala, poso-stratification). Etsoe eketsehileng mabapi le diphanele Inthaneteng, sheba Callegaro et al. (2014) .
Ka linako tse ling bafuputsi ba fumane hore kgonego disampole le disampole non-kgonego tenyetseha likhakanyo tsa boleng bo tšoanang (Ansolabehere and Schaffner 2014) , empa ho ipapisa tse ling li fumane hore batho bao e seng kgonego disampole etse se sebe ho (Malhotra and Krosnick 2007; Yeager et al. 2011) . Lebaka le leng khoneha hore ho se tšoane tsena ke hore batho bao e seng kgonego disampole ba ntlafalitse ha nako e ntse. Bakeng sa pono e eketsehileng-nyatsa bao e seng kgonego mohlala mekgwa bona ea AAPOR mosebetsi Force mabapi le Non-kgonego mohlala (Baker et al. 2013) , 'me ke boetse ho kgothaletsa ho bala hlalosang hore latela tlaleho kgutsufatso.
Bakeng sa Meta-Analysis ka phello ea boima bo ho fokotsa leeme ka disampole non-kgonego, sheba Lethathamo 2,4 a Tourangeau, Conrad, and Couper (2013) , e leng e isa baqapi ba ho etsa qeto ea "liphetoho bonahala eka ba molemo empa fallible lokisa. . . "
Conrad and Schober (2008) e fana ka molumo oa hlophisitsoeng ba e biditseng Envisioning ea Survey Puisano ea Future, 'me e bua e mengata ea meralo ea karolong ena. Couper (2011) o bua le meralo e tšoanang,' me Schober et al. (2015) e fana ka mohlala o monate ea kamoo mekhoa ea pokello ya data tse lumellanang le boemo ba puo e ncha e ka fella ka ya data boleng bo phahameng.
Ka mohlala o mong thahasellisang ea ho sebelisa Facebook ditiriso bakeng dipatlisiso tsa saense ea bitsoang tsoang sechabeng, sheba Bail (2015) .
Bakeng sa keletso eketsehileng mabapi le ho etsa dipatlisiso le phihlelo e thabisang le ea bohlokoa bakeng sa barupeluoa, sheba mosebetsi oa tailored Design Method (Dillman, Smyth, and Christian 2014) .
Stone et al. (2007) e fana ka buka bolelele kalafo ea tlholeho motsotsoana tekolo le mekhoa e amanang le.
Judson (2007) hlalosoa tshebetso ya ho kopantseng dipatlisiso le data la tsamaiso e le "boitsebiso bo soma," e tšohla melemo e itseng ea ho atamela ena, 'me e fana ka mehlala e meng.
Tsela e 'ngoe eo bafuputsi ba ka sebelisa bonoa moroeroe dijethale le data la tsamaiso ke mohlala foreimi bakeng sa batho ba nang le litsobotsi tse tobileng. Leha ho le joalo, fihlella direkoto tsa tsena ho sebelisoa mohlala foreimi ka boela bōpa lipotso tse amanang le boinotši ba (Beskow, Sandler, and Weinberger 2006) .
Mabapi le a batho ba botsang Amplified, mokhoa ona hase joaloka mocha e ho ka 'na bonahala eka ho tloha kamoo Ke hlalosa. Mokhoa ona o na dikgokelo e tebileng libakeng tse tharo tse khōlō ka lipalo-palo tse-ea mohlala e thehiloeng poso-stratification (Little 1993) , imputation (Rubin 2004) , 'me e nyenyane sebakeng sa fopholetsa (Rao and Molina 2015) . E boetse e amana le ho sebelisa libaka tsa divariabole surrogate a etsa lipatlisiso tsa bongaka (Pepe 1992) .
Ho phaella ho lipotso tsa boitshwaro mabapi kena ya data dijethale moneketsela, Amplified kotunaka ka boela ho sebediswa ho fihlela qeto ea litšobotsi mamelang le e ikemiselitseng hore batho ba ka 'na ua khetha ho mo senolela a phuputso e entsoeng (Kosinski, Stillwell, and Graepel 2013) .
Litšenyehelo le nako e hakanya a Blumenstock, Cadamuro, and On (2015) fetisetsa ho feta ho polygonal bolokang tjhelete litšenyehelo tsa' ngoe ditjeo phuputso e entsoeng-tse ling tsa tlatsetso ha kenyeletsa tsitsitseng kang litšenyehelo ho hloekisa le ya data ya call. Ka kakaretso, Amplified kotunaka mohlomong ba le phahameng ditjeo tsitsitseng le tlaase polygonal ditjeo tse tšoanang le liteko dijethale (sheba Khaolo ea 4). Lintlha tse eketsehileng mabapi le ya data sebelisitsoeng Blumenstock, Cadamuro, and On (2015) hatisitsoeng pampiring ba Blumenstock and Eagle (2010) le ho Blumenstock and Eagle (2012) . E atamela e tsoa multiple imputuation (Rubin 2004) ka thusang nkhape se tsitse ka likhakanyo tsa ho kōpa Amplified. Haeba bafuputsi etsa Amplified botsa tsotella lokisa mathata ao aggregate, ho e-na le mekhoa e ka bomong leveleng feela, joale e atamela mathata a King and Lu (2008) le ho Hopkins and King (2010) ba ka' na ba molemo. Etsoe ho eketsehileng ka le atamela mochine ithuta ka Blumenstock, Cadamuro, and On (2015) , sheba James et al. (2013) (eketsehileng ba kenyelletso) kapa Hastie, Tibshirani, and Friedman (2009) (hatetse pejana). Ngoe e tummeng mochine ithuta buka e baletsweng ke Murphy (2012) .
Mabapi ntlafatsa kope, ea fella ka Ansolabehere le Hersh (2012) golonka mehato tse peli tsa sehlooho: 1) e le bokgoni ba Catalist ho kopana tse ngata disparate ya data mehloling ho hlahisa e nepahetseng mong'a datafile le 2) bokhoni ba Catalist ho amahanya boitsebiso phuputso eo mong'a yona datafile. Ka lebaka leo, Ansolabehere le Hersh hlahloba nngwe le nngwe ya mehato ena ka hloko.
Ho bopa mong'a datafile, Catalist kopanya le lumellana fumane boitsebiso bo mehloling e mengata e fapaneng ho akarelletsa le: multiple direkoto tsa ho vouta snapshots le e mong le puso, ya data ho tloha Post Office a Change Sechaba ea Address Registry, 'me data ho tswa bafani tse ling bo sa hlalosoang khoebo. Makolopetso gory mabapi le kamoo ho hloekisa ena eohle le ho hlahella etsahala ke ha khoneha hore buka ena, empa sena, ho sa tsotellehe hore na ba hlokolosi, e tla jala mashano talima liphoso libukeng tsa mathomo le mehloli data le tla kenyelletsa talima liphoso. Le hoja Catalist o ne a ikemiselitse ho buisana ka lokisa yona ya data le ho fana ka ba bang ba ya data ya yona e tala, e ne e mpa feela ke ha khoneha hore bafuputsi ho lekola eohle Catalist ya data meralong feela. Na le hoo, bafuputsi ba ne ba le boemong bo moo Catalist ya data faele ne tsejoeng, 'me mohlomong unknowable, tjhelete ya phoso. Ena ke kameho ea tebileng hobane le mohlahlobisisi ka 'na nahana hore phapang ke efe pakeng tsa kgolo eo e tlaleha hore phuputso e entsoeng mabapi le CCES le boitšoaro ka Catalist faele mong'a ya data ba ne ba ile a etsa hore ke talima liphoso a faele mong'a ya data, eseng ka misreporting ke arabetseng.
Ansolabehere le Hersh nka e atamela mathata a mabeli a fapaneng ho bua le kameho ea data ho boleng. Taba ea pele, ho phaella ho bapisa intša tlaleha vouta ho kgetha ka Catalist mong'a faele, bafuputsi boetse a bapisa ho intša tlaleha mokha, morabe, motlhophi boemo ngodiso (mohlala, ngolisoa kapa che ngolisoa) le mokhoa oo vouta (mohlala, ka seqo, absentee dibaloto, joalo-joalo) ho ananela ba fumanoa ka databases Catalist. Etsoe tsena tse 'nè divariabole babapatsi, bafuputsi ba ile ba fumana maemo a mang a phahameng boholo ba tumellano pakeng tsa tlaleho phuputsong e entsoeng le data ka Catalist mong'a faele ho feta bakeng sa ho vouta. Kahoo, Catalist mong'a ya data faele bonahalang na high quality go tlhahisoleseding litšobotsi tse ling ho feta ho vouta, ho bontša hore ho ke ke ha ka tsela e fokolang ka kakaretso boleng. Ea bobeli, a karolo sebelisa data ho tswa Catalist, Ansolabehere le Hersh ntshetswa litekanyo tse tharo tse sa tšoaneng tsa boleng ba direkoto tsa seterekeng vouta, 'me ba fumana hore ha hakanngoa tekanyo ea holimo-tlalehelang ea ho vouta e ne hantle amaneng efe kapa efe ya mehato ena ya data quality, se fuputsang hore fana ka maikutlo a hore e phahameng ea ba fetang-tlalehelang ha li khannoang ke counties le sa tloaelehang libya ya data.
Fuoa ho bōptjoa ena mong'a vouta faele, mohloli oa bobeli oa talima liphoso bokgoni ba e tsoang tlaleha se etsahalang ka phuputso eo ho eona. Ka mohlala, haeba khokahano sena se etsoa ka ho fosahala ho ka lebisa ho ya ho tse fetang-lekanya phapang pakeng tsa tlaleha le tiisitsoe ka oona vouta boitshwaro ja (Neter, Maynes, and Ramanathan 1965) . Haeba mong le e mong motho ba ne ba e tsitsitseng, e moswananosi eo e ne e ka bobeli le mehloli e ya data, joale khokahano ne e tla ba sa reng letho. Ka US le linaheng tse ngata le leng, leha ho le joalo, ha ho na moswananosi bokahohleng. Ho ekelletsa moo, esita le haeba ho ne ho e joalo e moswananosi batho ba ne ba ka etsahala hore ebe ba leqe ho fana ka eona e le hore Survey bafuputsi! Kahoo, Catalist ile ka tlameha ho etsa khokahano sebelisa identifiers sa phethahalang, tabeng ena likotoana tse 'nè tsa tlhahisoleseding e mabapi le e mong le e moqosuwa: Lebitso la, bong, selemo pelehi, le aterese lapeng. Ka mohlala, Catalist ile ka tlameha ho etsa qeto ya hore ea Homie J Simpson ka CCES e ne e le motho tšoana le Homer Jay Simpson a mo file bona mong'a ya data. Ka mokhoa ona, le tshwanang ke thata le bohlasoa thulaganyong, 'me, ho etsa lintho le ho feta bakeng sa bafuputsi, Catalist nkoa le tshwanang mokhoa yona ho ba dikhampani.
E le hore a validate ea dikgatotharabololong le tshwanang, ba itšetleha ka mathata a mabeli ao. Taba ea pele, Catalist kenya letsoho tlhōlisano e nyalanang e neng e tsamaisoa ke ikemetse, mokga wa boraro: ho MITRE Corporation. MITRE feela barupeluoa bohle ba babeli ya data lerata difaele ho matched, 'me lithimi tse fapaneng ba ne ba gaisana ho khutlela MITRE tse tshwanang molemo ka ho fetisisa. Hobane MITRE boeona tseba tse tshwanang nepahetse ba ne ba khona ho Score lihlopha tsa. Ea lik'hamphani tse 40 hore ba ne ba gaisana, Catalist ile a sebakeng sa bobeli. Ea mofuta ona e ikemetseng, mokga wa boraro hlahlobo ya thekenoloji a dikhampani le ke ka seoelo haholo le Hoa makatsa hore ebe ea bohlokoa; e lokela ho re fa kholiseho ea hore Catalist a le tshwanang mekgwatshebetso ya di hantle nakong ea puso-of-the-bonono. Empa ke puso of-the-bonono molemo ka ho lekaneng? Ho phaella ho tlhōlisano ena le tshwanang, Ansolabehere le Hersh bōpa le tshwanang habo bona baa thatafalloa Catalist. From projeke e ka eena pejana, Ansolabehere le Hersh ne a bokella direkoto tsa motlhophi tsoang Florida. Ba fane ka tse ling tsa direkoto tsa tsena le tse ling tsa masimo a bona redacted ho Catalist 'me joale bapisoa litlaleho tse Catalist ea masimo ana a ho makgabane bona ba sebele. Ka lehlohonolo, litlaleho Catalist li ne li le haufi le litekanyetso ha lea boleloa, ho bontšang hore Catalist ka tšoanang le direkoto tsa ka leeme motlhophi holim'a faele mong'a bona ya data. liphephetso tsena tse peli, e 'ngoe ke tsa mokga wa boraro' me e mong ke Ansolabehere le Hersh, re fa kholiseho ea ho eketsehileng ka Catalist dikgatotharabololong le tshwanang, le hoja re ke ke ra hlahloba ba bona ho kenngwa tshebetsong ha tobileng itsebang kateng.
Ho 'nile ha boiteko ba bangata mehleng ho validate vouta. Etsoe kakaretso ea lingoliloeng tseo, bona Belli et al. (1999) , Berent, Krosnick, and Lupia (2011) , Ansolabehere and Hersh (2012) , le Hanmer, Banks, and White (2014) .
Ho bohlokoa ho hlokomela hore le hoja tabeng ena bafuputsi ba ile ba khothalletsoa ke boleng ba data ho tswa Catalist, patlotlhotlhwa tse ling tsa barekisi likhoele tsa khoebo 'nile ka tlaase ho moo chesehang. Bafuputsi ba fumane boleng bo tlaase ha data ho tswa phuputso e entsoeng ho moreki-faele ho tswa Marketing Systems Group (e leng ka boeona di ne tsa kopanngwa mmoho data ho tswa bafani tse tharo: Acxiom, Experian, 'me InfoUSA) (Pasek et al. 2014) . Ke hore, faele ya data ha aa tšoanang likarabo phuputso e entsoeng eo bafuputsi ba lebeletsoe hore se nepahetse, datafile ba ne ba le sieo ya data bakeng sa palo e kholo ea lipotso, 'me bao ba ya data haellang paterone ile correlated ho latela boleng ba tlaleha phuputso e entsoeng (ka mantsoe a mang ya data haellang e ne e e laolehileng , eseng tšohanyetso).
Bakeng sa tse tlalehiloeng khokahano pakeng tsa liphuputso le data tsamaiso, bona Sakshaug and Kreuter (2012) le ho Schnell (2013) . Bakeng sa tse tlalehiloeng khokahano ka kakaretso, sheba Dunn (1946) le ho Fellegi and Sunter (1969) (libaka tse tummeng historing) le Larsen and Winkler (2014) (eo kajeno). Le atamela Similar le tsona li qapa ho tsa saense khomphuteng ya tlas'a mabitso a kang ya data deduplication, mohlala boitsebahatso, lebitso la tshwanelelanang, lefahla ba bonoa, le etsisa rekoto phumano (Elmagarmid, Ipeirotis, and Verykios 2007) . Ho boetse ho na boinotši ba bolokoe le atamela hore a tlalehe khokahano e leng u se ke ua hloka phetiso ea batho ka bomong le khethollang fumane boitsebiso bo (Schnell 2013) . Bafuputsi Facebook ntshetswa Tsamaiso e ea ho probabilisticsly amahanya direkoto tsa bona ba le mekhoa vouta (Jones et al. 2013) ; khokahano ena ho ne ho etsoa ho lekola e teko eo ke tla u bolella hoo e ka bang ka Khaolo ea 4 (Bond et al. 2012) .
Mohlala o mong oa tsoang sa ka tekanyo e kholo phuputso e entsoeng sechabeng ea hore direkoto tsa 'muso tsa tsamaiso tsa tsoa Health and Survey tlohela mosebetsi' me Administration Social Security. Etsoe eketsehileng mabapi le thuto ea hore, ho akarelletsa le boitsebiso bo mabapi le ho buuoa hoo ho tumello, sheba Olson (1996) le ho Olson (1999) .
Tshebetso ya ho kopantseng mehloli e mengata tsa direkoto tsa tsamaiso tsa ho kena ea hloahloa datafile-tsamaiso ee Catalist bahiruoa-ho tloaelehile liofising tsa dipalopalo mebuso ba bang sechaba. Bafuputsi ba babeli ba tsoang Lipalo-palo Sweden ngotseng buka e qaqileng ka taba eo (Wallgren and Wallgren 2007) . Etsoe mohlala oa mokhoa ona ka seterekeng se nang balekane ba United States (Olmstead County, Minnesota; lapeng la Mayo Clinic), sheba Sauver et al. (2011) . Etsoe eketsehileng mabapi le talima liphoso tse ka hlahang ka direkoto tsa tsamaiso, tsa bona Groen (2012) .