Մաթեմատիկական նշումներ

Այս հավելվածում ես կներկայացնեմ որոշակի գաղափարներ, ոչ մի փորձարարական տվյալներից մի փոքր ավելի մաթեմատիկական ձեւով պատճառահետեւանքային ելք կատարելու մասին: Կան երկու հիմնական մոտեցում `պատճառահետեւանքային գրաֆիկի շրջանակ, որն առավել շատ կապված է Ջուդա Պիրլի եւ գործընկերների հետ եւ հնարավոր արդյունքների շրջանակի հետ, առավել եւս Դոնալդ Ռուբինին եւ գործընկերներին: Ես կներկայացնեմ հնարավոր արդյունքները, քանի որ այն ավելի սերտորեն կապված է մաթեմատիկական նշումների գաղափարների հետ, 3-րդ եւ 4-րդ գլուխների վերջում: Լրացուցիչ տեղեկությունների համար ես խորհուրդ եմ տալիս Pearl, Glymour, and Jewell (2016) (Introductory ) եւ Pearl (2009) (առաջադեմ): Անհրաժեշտ արդյունքների շրջանակն ու պատճառային գրաֆիկի շրջանակները համատեղող պատճառահետեւանքային ելույթների գիրքային երկարամտության բուժման համար ես առաջարկում եմ Morgan and Winship (2014) :

Այս հավելվածի նպատակն է օգնել ձեզ հարմարվել պոտենցիալ արդյունքների ավանդույթի նշանն ու ոճը, որպեսզի կարողանաք անցնել այս թեմայի վրա գրված ավելի շատ տեխնիկական նյութի: Նախ, ես նկարագրում եմ հնարավոր արդյունքները: Այնուհետեւ ես կօգտագործեմ այն, որ հետագայում Angrist (1990) բնական փորձեր, ինչպիսին է Angrist (1990) , Զինվորական ծառայության ազդեցությունը վաստակի վրա: Այս հավելվածը մեծապես ներառում է Imbens and Rubin (2015) :

Հնարավոր արդյունքների շրջանակ

Պոտենցիալ արդյունքների շրջանակն ունի երեք հիմնական տարր ` միավորներ , բուժում եւ հնարավոր արդյունքներ : Այս տարրերը նկարագրելու համար, եկեք Angrist (1990) հարցի ոճավորված տարբերակը Angrist (1990) : Ինչ է նշանակում զինվորական ծառայության ազդեցությունը վաստակի վրա: Այս դեպքում մենք կարող ենք սահմանել այն միավորները, որոնք կարող են լինել ԱՄՆ-ում 1970 թ. Նախագծի համար, եւ մենք կարող ենք այդ մարդկանց համար նշել i=1,,Ni=1,,N : Բուժում է այս դեպքում կարող է լինել «ծառայում է բանակում» կամ «ոչ ծառայում է բանակում.« Ես կզանգեմ այդ բուժման եւ վերահսկողության պայմանների, եւ ես պետք է գրեմ Wi=1Wi=1 , եթե անձը ii գտնվում է բուժման պայմաններում եւ Wi=0Wi=0 եթե անձը ii գտնվում է վերահսկողության վիճակում: Վերջապես, պոտենցիալ արդյունքները մի փոքր ավելի բարդ են, քանի որ դրանք ներառում են «պոտենցիալ» արդյունքներ. բաներ, որոնք կարող էին տեղի ունենալ: 1970 թ. Նախագծի համարժեք յուրաքանչյուր անձի համար մենք կարող ենք պատկերացնել այն գումարը, որը նրանք վաստակել են 1978 թ.-ին, եթե նրանք ծառայեն զինված ուժերում, որոնք կոչում եմ Yi(1)Yi(1) եւ այն գումարը, 1978-ին, եթե նրանք ծառայեին զինված ուժերում, որոնք ես կոչելու եմ Yi(0)Yi(0) : Պոտենցիալ արդյունքների շրջանակում Yi(1)Yi(1) եւ Yi(0)Yi(0) համարվում են որոշակի քանակություններ, իսկ WiWi պատահական փոփոխական է:

Բաժանմունքը, բուժումը եւ արդյունքների ընտրությունը շատ կարեւոր է, քանի որ այն սահմանում է, թե ինչ կարող է եւ չի կարող սովորել ուսումնասիրությունից: 1970-ի նախագծին համապատասխանող անձանց ընտրությունը չի ներառում կանանց եւ, հետեւաբար, առանց լրացուցիչ ենթադրությունների, այս ուսումնասիրությունը մեզ ոչինչ չի պատմի կանանց վրա զինվորական ծառայության ազդեցության մասին: Կարեւոր են նաեւ բուժման եւ արդյունքների որոշման վերաբերյալ որոշումներ: Օրինակ, պետք է շահագրգիռ վերաբերմունք դրսեւորվի զինվորական ծառայություն մատուցելու կամ մարտական ​​գործողություններ կատարելու վրա: Եթե ​​շահագրգռվածության արդյունքը վաստակի կամ աշխատանքի բավարարվածության հետեւանք է: Ի վերջո, միավորների ընտրությունը, բուժումը եւ արդյունքները պետք է հանգեցնել հետազոտության գիտական ​​եւ քաղաքական նպատակներին:

Հաշվի առնելով միավորների, բուժման եւ հնարավոր արդյունքների ընտրությունը, բուժման պատճառահետեւանքային ազդեցությունը ii , τiτi վրա

τi=Yi(1)Yi(0)(2.1)τi=Yi(1)Yi(0)(2.1)

Այլ կերպ ասած, մենք համեմատել, թե որքան մարդը ii կլիներ վաստակել ծառայելուց հետո է, թե որքան մարդը ii կլիներ վաստակել առանց ծառայում: Ինձ, էլ. 2.1-ը պատճառահետեւանքային ազդեցության որոշման պարզագույն եղանակն է, եւ թեեւ չափազանց պարզ է, այս շրջանակն ընդհանրացվում է շատ կարեւոր եւ հետաքրքիր ձեւերով (Imbens and Rubin 2015) :

Պոտենցիալ արդյունքների շրջանակի կիրառմամբ ես հաճախ գտնում եմ, որ օգտակար է գրել սեղան, որը ցույց է տալիս բոլոր հնարավոր միավորները եւ դրանց բուժման հետեւանքները (աղյուսակ 2.5): Եթե ​​դուք չեք կարող պատկերացնել նման սեղան ձեր ուսումնասիրության համար, ապա դուք կարող եք ավելի ճշգրիտ լինել ձեր միավորումների, բուժման եւ հնարավոր արդյունքների ձեր սահմանումների մեջ:

Աղյուսակ 2.5. Պոտենցիալ արդյունքների աղյուսակ
Անձ Ծախսերը բուժման վիճակում Հաշվարկները վերահսկողության վիճակում Բուժման ազդեցությունը
1 Y1(1)Y1(1) Y1(0)Y1(0) τ1τ1
2 Y2(1)Y2(1) Y2(0)Y2(0) τ2τ2
NN YN(1)YN(1) YN(0)YN(0) τNτN
Նկատի ունեմ ˉY(1)¯Y(1) ˉY(0)¯Y(0) ˉτ¯τ

Այս ձեւով պատճառական ազդեցություն սահմանելով, սակայն, մենք խնդիր ենք դնում: Գրեթե բոլոր դեպքերում մենք չենք կարող դիտարկել ինչպես պոտենցիալ արդյունքները: Այսինքն, կոնկրետ անձը ծառայել էր կամ չի ծառայել: Հետեւաբար, մենք դիտում ենք հնարավոր արդյունքներից մեկը ` Yi(1)Yi(1) կամ Yi(0)Yi(0) բայց ոչ թե երկուսն էլ: Պոտենցիալի արդյունքների դիտարկման անկարողությունն այնպիսի մեծ խնդիր է, որ Holland (1986) այն անվանեց «Պատճառային ելույթների հիմնարար խնդիր» :

Բարեբախտաբար, երբ մենք հետազոտություններ ենք անում, մենք ընդամենը մեկ մարդու չունենք, Ավելի շուտ, մենք ունենք շատ մարդիկ, եւ սա առաջարկում է ճանապարհ դեպի պատճառային ելակետի հիմնարար խնդիրը: Անհատական ​​մակարդակի բուժման ազդեցությունը գնահատելու փորձի փոխարեն, մենք կարող ենք գնահատել բոլոր բաղադրիչների միջին բուժման ազդեցությունը .

ATE=ˉτ=1NNi=1τi(2.2)ATE=¯τ=1NNi=1τi(2.2)

Այս հավասարումը դեռեւս արտահայտված է τiτi , որոնք անսահմանելի են, բայց որոշակի գրադարանների միջոցով (eq 2.8 Gerber and Green (2012) ), մենք ստանում ենք

ATE=1NNi=1Yi(1)1NNi=1Yi(0)(2.3)ATE=1NNi=1Yi(1)1NNi=1Yi(0)(2.3)

Սա ցույց է տալիս, որ եթե մենք կարող ենք գնահատել բնակչության միջին արդյունքը տակ բուժման ( N1Ni=1Yi(1)N1Ni=1Yi(1) ), իսկ բնակչությունը միջին արդյունքը վերահսկողության տակ ( N1Ni=1Yi(1)N1Ni=1Yi(1) ), ապա մենք կարող ենք գնահատել միջին բուժման ազդեցությունը, նույնիսկ առանց որեւէ մարդու համար բուժման ազդեցությունը գնահատելու:

Հիմա, որ ես սահմանել եմ մեր նախագիծը `այն, ինչ մենք փորձում ենք գնահատել, ես դիմում եմ, թե ինչպես կարող ենք իրական արժեքով գնահատել այն: Եվ այստեղ մենք ուղղակիորեն գնում ենք այն խնդիրը, որը մենք դիտարկում ենք միայն յուրաքանչյուր մարդու համար հնարավոր արդյունքներից մեկը: մենք տեսնում ենք կամ Yi(0)Yi(0) կամ Yi(1)Yi(1) (աղյուսակ 2.6): Մենք կարող ենք գնահատել միջին բուժման ազդեցությունը `համեմատելով մարդկանց եկամուտները, որոնք ծառայել են այն մարդկանց եկամուտներին, որոնք չեն ծառայել.

^ATE=1Nti:Wi=1Yi(1)average earnings, treatment1Nci:Wi=0Yi(0)average earnings, control(2.4)

որտեղ Nt եւ Nc հանդիսանում են բուժման եւ հսկողության պայմաններում մարդկանց թիվը: Այս մոտեցումը լավ կաշխատի, եթե բուժման հանձնարարությունը անկախ լինի հնարավոր արդյունքներից, պայմանը երբեմն անտեղյակ է : Ցավոք, փորձի բացակայության դեպքում անտեղյակությունը հաճախ չի բավարարվում, ինչը նշանակում է, 2.4-ը հավանաբար լավ գնահատական ​​չի տա: Այս մասին մտածելու ձեւերից մեկն այն է, որ բուժման պատահական հանձնարարության բացակայության դեպքում, eq. 2.4 նման չէ նմանության հետ. այն համեմատում է տարբեր տեսակի մարդկանց եկամուտները: Կամ էլ միանգամայն տարբեր էին, առանց ռադիոհաղորդման պատահական հանձնարարության, բուժման բաշխումը, հավանաբար, կապված է հնարավոր արդյունքների հետ:

Գլուխ 4-ում ես նկարագրում եմ, թե ինչպես են randomized- ի վերահսկվող փորձերը կարող են օգնել հետազոտողներին պատճառահետեւանքային գնահատականներ անել, եւ այստեղ ես նկարագրելու եմ, թե ինչպես հետազոտողները կարող են օգտվել բնական փորձարկումներից, ինչպիսիք են վիճակախաղի նախագիծը:

Աղյուսակ 2.6. Դիտարկված արդյունքների աղյուսակ
Անձ Ծախսերը բուժման վիճակում Հաշվարկները վերահսկողության վիճակում Բուժման ազդեցությունը
1 Հաճախակի Y1(0) Հաճախակի
2 Y2(1) Հաճախակի Հաճախակի
N YN(1) Հաճախակի Հաճախակի
Նկատի ունեմ Հաճախակի Հաճախակի Հաճախակի

Բնական փորձեր

Միակ մոտեցումը, առանց պատճառաբանության գնահատման կատարելու փորձ կատարելու, փորձ է արվում, որ աշխարհում ինչ-որ բան տեղի ունենա, որը պատահականորեն նշանակում է ձեզ բուժում: Այս մոտեցումը կոչվում է բնական փորձեր : Շատ դեպքերում, ցավոք, բնությունը պատահականորեն չի մատուցում այն ​​բուժումը, որը ցանկանում եք բնակչության հետաքրքրվածության համար: Բայց երբեմն բնությունը պատահականորեն տրամադրում է համապատասխան բուժում: Մասնավորապես, ես կքննարկեմ այն ​​դեպքը, երբ կա մի երկրորդական բուժում, որը խրախուսում է մարդկանց ստանալ առաջնային բուժում : Օրինակ, նախագիծը կարող էր համարվել պատահականորեն նշանակված երկրորդական բուժում, որը ոգեշնչեց որոշ մարդկանց `վերցնել առաջնային բուժումը, որը ծառայում էր զինված ուժերում: Այս դիզայնը երբեմն կոչվում է խրախուսանքի դիզայն : Եվ այս իրավիճակը կարգավորելու համար նկարագրող վերլուծության մեթոդը երբեմն կոչվում է գործիքային փոփոխական : Այս պարագայում, որոշ ենթադրություններով, հետազոտողները կարող են օգտագործել խրախուսանքը `իմանալով առաջնային բուժման ազդեցությունը միավորների որոշակի ենթախմբի վրա:

Որպեսզի կարգավորեն երկու տարբեր բուժում `խրախուսանքը եւ առաջնային վերաբերմունքը, մենք պետք է որոշ նոր նշումներ: Ենթադրենք, որոշ մարդիկ պատահականորեն պատրաստվում են ( Zi=1 ) կամ չեն պատրաստվում ( Zi=0 ); այս իրավիճակում Zi երբեմն կոչվում է գործիք :

Նրանցից Zi=1,Wi=1 ոմանք ( Zi=1,Wi=1 ) եւ ոմանք չեն ( Zi=1,Wi=0 ): Նմանապես, նրանց, ովքեր չեն պատրաստվել, ոմանք ծառայել են ( Zi=0,Wi=1 ) եւ ոմանք չեն ( Zi=0,Wi=0 ): Յուրաքանչյուր անձի համար ներուժը կարող է ընդլայնվել `ցույց տալով իրենց կարգավիճակը ինչպես խրախուսանքի, այնպես էլ բուժման համար: Օրինակ, թույլատրեք Y(1,Wi(1)) անձի i եկամուտը, եթե այն ստեղծվել է, որտեղ Wi(1) նրա ծառայողական կարգավիճակը, եթե մշակված է: Բացի այդ, մենք կարող ենք բաժանել բնակչությանը չորս խմբերի `compliers, never- takers, defiers եւ մշտապես takers (աղյուսակ 2.7):

Աղյուսակ 2.7. Մարդկանց չորս տեսակ
Տիպ Ծառայություն, եթե պատրաստված է Ծառայություն, եթե չի պատրաստվում
Կազմողներ Այո, Wi(Zi=1)=1 Ոչ, Wi(Zi=0)=0
Never-takers Ոչ, Wi(Zi=1)=0 Ոչ, Wi(Zi=0)=0
Defiers Ոչ, Wi(Zi=1)=0 Այո, Wi(Zi=0)=1
Միշտ `տանողներ Այո, Wi(Zi=1)=1 Այո, Wi(Zi=0)=1

Նախքան քննարկում ենք բուժման ազդեցությունը գնահատելու համար (այսինքն զինվորականծառայություն),մենքնախեւառաջկարողենքսահմանելքաջալերանքիերկուհետեւանք(այսինքն պատրաստված): Նախ, մենք կարող ենք սահմանել առաջնային բուժման խրախուսանքի ազդեցությունը: Երկրորդ, մենք կարող ենք սահմանել արդյունքի վրա քաջալերանքի ազդեցությունը: Պարզվում է, որ այս երկու հետեւանքները կարող են համակցվել `տրամադրելու որոշակի մարդկանց խմբի բուժման ազդեցությունը:

Նախ, բուժման խրախուսման ազդեցությունը կարող է որոշվել անձի համար i

ITTW,i=Wi(1)Wi(0)(2.5)

Բացի այդ, այս քանակությունը կարող է սահմանվել ամբողջ բնակչության նկատմամբ

ITTW=1NNi=1[Wi(1)Wi(0)](2.6)

Վերջապես, մենք կարող ենք գնահատել ITTW տվյալները օգտագործելով.

^ITTW=ˉWobs1ˉWobs0(2.7)

որտեղ ˉWobs1 հանդիսանում է խրախուսվածների եւ ˉWobs0 ովքեր չեն խրախուսվում բուժման դիտարկված մակարդակը: ITTW նաեւ երբեմն կոչվում է ընդունման տոկոսադրույքը :

Հաջորդը, արդյունքների վրա խրախուսանքի ազդեցությունը կարող է սահմանվել անձի համար, i ինչպես նաեւ `

ITTY,i=Yi(1,Wi(1))Yi(0,Wi(0))(2.8)

Բացի այդ, այս քանակությունը կարող է սահմանվել ամբողջ բնակչության նկատմամբ

ITTY=1NNi=1[Yi(1,Wi(1))Yi(0,Wi(0))](2.9)

Վերջապես, մենք կարող ենք գնահատել ITTY տվյալները օգտագործելով.

^ITTY=ˉYobs1ˉYobs0(2.10)

որտեղ ˉYobs1 դիտարկված արդյունքն է (օրինակ, եկամուտներ), ովքեր խրախուսվում են (օրինակ, մշակված) եւ ˉWobs0 դիտարկված արդյունք է նրանց համար, ովքեր չեն խրախուսվում:

Վերջապես, մենք ուշադրություն ենք դարձնում հետաքրքրության ազդեցությանը առաջնայինբուժմանազդեցությունը(օրինակ զինվորական ծառայություն) արդյունքների վրա (օրինակ, շահույթ): Ցավոք, ստացվում է, որ չի կարելի ընդհանուր առմամբ գնահատել այդ ազդեցությունը բոլոր ստորաբաժանումների վրա: Այնուամենայնիվ, որոշ ենթադրություններով, հետազոտողները կարող են գնահատել բուժման ազդեցությունը կոմպոզիտորների վրա (այսինքն, այն մարդիկ, ովքեր կծառայեն, եթե մշակվեն, եւ այն մարդիկ, ովքեր չեն ծառայելու, եթե ոչ պատրաստված, աղյուսակ 2.7): Ես այս անվանում եմ կոչում իմաստային միջին պատճառական ազդեցությունը (CACE) (որը նաեւ երբեմն կոչվում է տեղական միջին բուժման ազդեցություն , LATE):

CACE=1Ncoi:Gi=co[Y(1,Wi(1))Y(0,Wi(0))](2.11)

որտեղ Gi նվիրաբերում է անձի խումբը i (տես աղյուսակ 2.7) եւ Nco հեղինակների թիվը: Այլ կերպ ասած, դ. 2.11-ը համեմատում է Yi(1,Wi(1)) եկամուտների մասին, որոնք պատրաստված են Yi(1,Wi(1)) եւ ոչ նախագծված չէ Yi(0,Wi(0)) : Հաշվետվություն 2.11 կարծես թե դժվար է գնահատել դիտված տվյալներից, քանի որ հնարավոր չէ պարզել կոմպիլյատորները, օգտագործելով միայն դիտված տվյալները (իմանալ, արդյոք որեւէ մեկը բաղադրիչ է, որը պետք է դիտարկի, թե արդյոք նա ծառայել է ծառայելիս, թե արդյոք ծառայել է, թե ոչ, չի պատրաստվել):

Պարզվում է `ինչ-որ չափով զարմանալի է, որ եթե կան կոմպոզիտորներ, ապա տրամադրված է երեք լրացուցիչ ենթադրություններ, հնարավոր է գնահատել CACE- ի գնահատված տվյալները: Նախ, պետք է ենթադրել, որ բուժման հանձնարարականը պատահական է: Վիճակախաղի նախագծի դեպքում դա ողջամիտ է: Այնուամենայնիվ, որոշ պարամետրեր, որտեղ բնական փորձերը չեն վստահում ֆիզիկական ռադիիզիզացիային, այս ենթադրությունը կարող է ավելի խնդրահարույց լինել: Երկրորդը, պետք է ենթադրել, որ դրանք ոչնչացնողներ չեն (այս ենթադրությունը երբեմն կոչվում է նաեւ մոնոտոնիկության ենթադրություն): Նախագծի համատեքստում կարծես խելամիտ է ենթադրել, որ կան շատ քիչ մարդիկ, ովքեր չեն պատրաստվում ծառայել, եթե ծառայեն, եթե չստեղծվեն: Երրորդ, եւ, վերջապես, գալիս է ամենակարեւոր ենթադրությունը, որը կոչվում է բացառություն սահմանափակում : Բացառությամբ սահմանափակման պայմաններում, պետք է ենթադրել, որ բուժման հանձնարարականի ողջ ազդեցությունը անցնում է բուժման միջոցով: Այլ կերպ ասած, պետք է ենթադրել, որ արդյունքների վերաբերյալ քաջալերանքի ուղղակի ազդեցություն չկա: Վիճակախաղի նախագծի դեպքում, օրինակ, պետք է ենթադրել, որ այդ նախագծի կարգավիճակը չի ազդում զինվորական ծառայությունից այլ եկամուտների վրա (նկար 2.11): Բացառությամբ սահմանափակումը կարող էր խախտվել, օրինակ, եթե նախապատրաստված մարդիկ դպրոցում ավելի շատ ժամանակ անցկացրին, ծառայությունից խուսափելու համար, կամ եթե գործատուները ավելի քիչ են վարձել մարդկանց, ովքեր պատրաստվում էին վարձել:

Գծապատկեր 2.11. Բացառությամբ սահմանափակումը պահանջում է, որ խթանումը (լոտոյի նախագիծը) ազդեցություն ունենա արդյունքների (եկամուտների) վրա միայն բուժման (զինվորական ծառայության) միջոցով: Բացառությամբ սահմանափակումները կարող էին խախտվել, օրինակ, եթե նախապատրաստված մարդիկ դպրոցում ավելի շատ ժամանակ անցկացրին, ծառայությունից խուսափելու համար, եւ դպրոցում այս ժամանակահատվածի աճը հանգեցրեց ավելի բարձր եկամուտների:

Գծապատկեր 2.11. Բացառությամբ սահմանափակումը պահանջում է, որ խթանումը (լոտոյի նախագիծը) ազդեցություն ունենա արդյունքների (եկամուտների) վրա միայն բուժման (զինվորական ծառայության) միջոցով: Բացառությամբ սահմանափակումները կարող էին խախտվել, օրինակ, եթե նախապատրաստված մարդիկ դպրոցում ավելի շատ ժամանակ անցկացրին, ծառայությունից խուսափելու համար, եւ դպրոցում այս ժամանակահատվածի աճը հանգեցրեց ավելի բարձր եկամուտների:

Եթե ​​այդ երեք վիճակը (բուժման պատահական հանձնարարություն, ոչ defiers եւ բացառման սահմանափակում), ապա

CACE=ITTYITTW(2.12)

այնպես որ մենք կարող ենք գնահատել CACE:

^CACE=^ITTY^ITTW(2.13)

CACE- ի մասին մտածելու միջոցներից մեկն այն է, որ այն տարբերությունն է այն մարդկանց միջեւ, ովքեր խրախուսվում են եւ չեն խրախուսվում, խթանելով գնաճը:

Խուսափելու համար կան երկու կարեւոր նախազգուշացում: Նախ, բացառություն սահմանափակումն ուժեղ ենթադրություն է, եւ այն պետք է հիմնավորված լինի առանձին դեպքերի վրա, ինչը հաճախ պահանջում է ենթակա տարածքային փորձաքննություն: Բացառությամբ սահմանափակումը չի կարող հիմնավորվել խրախուսանքի պատահականության հետ: Երկրորդ, ընդհանուր գործնական մարտահրավեր գործիքային փոփոխական վերլուծության հետ, երբ քաջալերանքը քիչ ազդեցություն է թողնում բուժման կուրսի վրա (երբ ITTW փոքր է): Սա կոչվում է թույլ գործիք , եւ դա հանգեցնում է մի շարք խնդիրների (Imbens and Rosenbaum 2005; Murray 2006) : Թույլ գործիքների հետ կապված խնդիրը մտածելու ձեւերից մեկն այն է, որ ^CACE կարող է զգայուն լինել փոքրիկ կողմնակալությունների համար, ^ITTY բացառությամբ սահմանափակման խախտումների, քանի որ այս կողմնակալությունները մեծացնում են փոքրիկ ^ITTW (տես `2.13 կետը): Կոպիտ, եթե բնույթը բնորոշող բուժումը մեծ ազդեցություն չի ունենում ձեր վերաբերմունքի վրա, ապա դուք դժվար ժամանակ եք ունենալու ձեր մասին մտածող վերաբերմունքի մասին:

Տեսեք 24-րդ եւ 24-րդ գլուխները Imbens and Rubin (2015) քննարկման ավելի ֆորմալ տարբերակի համար: Ավանդական փոփոխականներին ավանդական էկոնոմիկ մոտեցումը սովորաբար արտահայտվում է հավասարումների գնահատման առումով, ոչ թե հնարավոր արդյունքների: Այս մյուս տեսանկյունից ներածական համար տես Angrist and Pischke (2009) , եւ երկու մոտեցումների միջեւ համեմատությունը, տես Imbens and Rubin (2015) ի 24.6 բաժինը Imbens and Rubin (2015) : Այլընտրանքային, գործիքային փոփոխականների մոտեցման մի փոքր պակաս ձեւական ներկայացում է տրվում Gerber and Green (2012) 6-րդ գլխում: Բացառությամբ սահմանափակման մասին ավելի շատ տեղեկությունների համար տես D. Jones (2015) : Aronow and Carnegie (2013) նկարագրում են լրացուցիչ մի շարք ենթադրություններ, որոնք կարող են օգտագործվել գնահատելու ATE- ի, քան CACE- ն: Լրացուցիչ տեղեկությունների համար, թե ինչպես բնական փորձերը կարող են շատ բարդ մեկնաբանել, տեսեք Sekhon and Titiunik (2012) : Բնական փորձերի ավելի ընդհանրական ներդրման համար, մեկը, որը դուրս է գալիս գործիքային փոփոխականների մոտից, ընդգրկում է նաեւ ռեգրեսիայի դադարեցում, տես ` Dunning (2012) :